MGMT Promoter Methylation Conferring Sensitivity to Alkylating Agents

The UNC Hospitals Molecular Genetics Laboratory performs DNA pyrosequencing to determine promoter methylation status of the O6-methylguanine methyltransferase (MGMT) gene. Promoter methylation is associated with low levels of MGMT protein and accompanying increased sensitivity of brain tumors, specifically glioblastomas, to alkylating agents such as BCNU (carmustine)1. Low levels of MGMT also appear correlated with prolonged progression-free survival (PFS) in patients with gliomas treated with temozolamide2.

Biology of the process: MGMT is a DNA repair enzyme that is associated with tumor resistance to alkylating agent therapy3. MGMT rapidly reverses alkylation, including methylation, at the O6 position of guanine by transferring the alkyl group to the active site of the enzyme4. Lack of MGMT in the cell allows accumulation of O6-alkylguanine in the DNA which, following incorrect pairing with thymidine, triggers mismatch repair, inducing DNA damage signaling and cell death5. Lack of MGMT expression is due to methylation of a CpG island located in the 5’ region of MGMT (bp -552 to +289) which includes 97 CpGs6. Methyl-CpG-binding proteins will bind to aberrantly methylated sequences which leads to alterations in chromatin structure, thus preventing the binding of other transcription factors, effectively silencing MGMT6.

Clinical indications for MGMT promoter methylation testing: Patients newly diagnosed with high grade gliomas (anaplastic astrocytomas and glioblastomas) or patients with gliomas who are being considered for temozolamide therapy.

Laboratory testing for MGMT promoter methylation: The preferred sample is a paraffin block containing at least 50% malignant cells or five unstained slides, 4-8 uM thick on plain glass, plus an H&E stained slide and a copy of the surgical pathology report. Tumor cells are enriched by macro-dissection, if needed, and the extracted DNA is subjected to a bisulfite-treatment step followed by pyrosequencing to determine methylation status of selected sites in the CpG island of the MGMT promoter. Results are interpreted by a pathologist. Turn-around time for results is expected to be two weeks.

Questions? Please consult a pathologist in the Molecular Genetics Lab at 919-966-4408 or e-mail Dr. Margaret L. Gulley at Margaret_gulley@med.unc.edu.